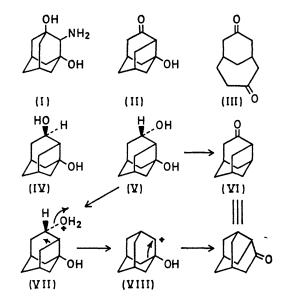
A Synthesis of 4-Protoadamantanone

By J. R. ALFORD and M. A. MCKERVEY*


(Department of Chemistry, The Queen's University, Belfast BT9 5AG)

Summary 4-Protoadamantanone has been synthesised from 1,3-dihydroxy-2-aminoadamantane in a threestage sequence involving a protoadamantane-adamantane-protoadamantane rearrangement.

OF all the known C_{10} tricyclic hydrocarbons, adamantane has long been considered the paragon of stability.¹ Nevertheless, the 2-adamantyl cation, as produced in the deamination of 2-aminoadamantane by the phenyltriazine method, undergoes a skeletal rearrangement to the 4-protoadamantyl cation to the extent of *ca*. $7\cdot5\%$.² An analogous rearrangement has been found to occur to a much greater extent in the nitrous acid deamination of 1,3-dihydroxy-2-aminoadamantane (I) and we have used this reaction to develop a synthesis of 4-protoadamantanone.

The hydrochloride of (I) was prepared from 3,7-bicyclo-[3,3,1]nonanedione by the method of Stetter and Tacke³ and treated with sodium nitrite in aqueous acetic acid at 0°. The product, m.p. 240—243°, obtained in 56% yield after purification by chromatography, sublimation, and recrystallisation was characterised as 8-hydroxytricyclo[4,3,1,0^{3,8}]decan-4-one (II) on the basis of the analytical data and the following spectral data: the i.r. spectrum (KBr) exhibited strong absorptions at 3400 and 1700 cm⁻¹ and the n.m.r. spectrum (100 MHz, CD₃SOCD₃) contained signals at τ 4.85 (1H, s, hydroxy-proton), 7.60—7.70 (3H, m, C-3 and C-5), and 7.70—8.80 (10H, m). The deamination reaction also gave trace amounts of 3,8-bicyclo[4,3,1]decanedione (III) which could be converted into (II) thermally.

In order to complete the synthesis of 4-protoadamantanone (VI) from (II) it was necessary to remove the hydroxygroup at C-8. This was achieved as follows. Lithium aluminium hydride reduction of (II) gave two diols in the ratio *ca.* 3:1. Separation was effected by adsorption chromatography over alumina and the major isomer, m.p. 208·5—210°, was assigned configuration (IV) on the basis of its n.m.r. spectrum (CD₃SOCD₃). The >CHO- proton on C-4 appeared as a multiplet centred at τ 5·95. The pattern reveals appreciable coupling of this proton to another proton ($J_{4\cdot5}$ 9·5 Hz) and a Dreiding model of (IV) shows a dihedral angle relationship approaching 180° between 4-H and one of the protons on C-5 which is consistent with the large observed coupling constant. The minor isomer (V), m.p. $302-304^{\circ}$, was not amenable to analysis by n.m.r. since the >CHO- proton appeared as a broad, poorly resolved, multiplet centred at τ 6.05.

A Dreiding model of (V) reveals a nearly perfect transrelationship between the C-O bond and C-2-C-3 bond and it was expected that ionisation at C-4 would initiate a sequence of rearrangements involving first of all migration of the C-2-C-3 bond with restoration of the adamantane skeleton in the form of the 1-hydroxy-2-adamantyl cation (VIII), followed by a second bond shift, regenerating the protoadamantane skeleton as shown in the Scheme, $(V) \rightarrow (VII) \rightarrow (VIII) \rightarrow (VI)$. In the event, brief treatment of (V) with hot 5N-sulphuric acid yielded a saturated ketone (75% yield), m.p. 205-208°, (2,4-dinitrophenylhydrazone, m.p. $193-194\cdot5^{\circ}$), which has been assigned the 4-protoadamantanone structure (IV) on the basis of the analytical and spectral data: mass spectrum m/e 150 (M^+ , 100%); i.r. (CCl₄): 1723 and 1714 cm.⁻¹ (lit.² 1729 and 1719 cm⁻¹); n.m.r. (CDCl₃): complex multiplets between τ 7.15

and 8.70. Confirmatory evidence was obtained by comparison of the physical and spectral data with those of 4-protoadamantanone prepared by independent methods.^{2,4}

We thank Professors M. C. Whiting and P. von R. Schleyer for kindly providing us with the physical and spectral data for 4-protoadamantanone synthesised in their laboratories. J. R. A. acknowledges financial support from the Northern Ireland Ministry of Education.

(Received, April 8th, 1970; Com. 494.)

¹ For a review see R. C. Fort, jun., and P. von R. Schleyer, *Chem. Rev.*, 1964, 64, 277. ² M. L. Sinnott, H. J. Storesund, and M. C. Whiting, *Chem. Comm.*, 1969, 1000. ³ H. Stetter and P. Tacke, *Chem. Ber.*, 1963, 96, 694.

⁴ P. von R. Schleyer and D. Lenoir, personal communication.